CABLE

20220215986 ยท 2022-07-07

    Inventors

    US classification

    • 1/1

    Cpc classification

    H01B7/18 H01B7/18
    Loading...
    H01B11/12 H01B11/12
    Loading...
    H01B1/02 H01B1/02
    Loading...
    H01B3/30 H01B3/30
    Loading...
    H01B11/002 H01B11/002
    Loading...
    H01B3/44 H01B3/44
    Loading...
    H01B13/14 H01B13/14
    Loading...

    International classification

    H01B11/00 H01B11/00
    Loading...
    H01B13/14 H01B13/14
    Loading...
    H01B7/18 H01B7/18
    Loading...

    Abstract

    A cable includes: a core wire; an insulating layer covering the core wire in an extrusion molding manner, a shielding layer covering the insulating layer, and a sheath covering the shielding layer, the core wire comprising a pair of inner conductors and the inner insulating layer of the pair of inner conductors are simultaneously covered by extrusion molding. Under the premise of ensuring impedance matching, the cable reduces the distance between the two conductors, so that the cable has lower insertion loss, and the overall size of the cable is also smaller, at the same time, the cable has a high-speed data transmission capability with a signal frequency greater than 40 GHz.

    Claims

    1. A cable comprising: a core wire having a pair of inner conductors and an inner insulating layer extrusion molded around the pair of inner conductors; an insulating layer extrusion molded around the core wire; a shielding layer covering the insulating layer; and a sheath covering the shielding layer.

    2. The cable as claimed in claim 1, wherein the cross-sectional profile of the inner insulating layer is glasses-shaped, the cross-sectional profile of the insulating layer is stadium-shaped, the inner insulating layer is provided with a connecting portion, and the size of the connecting portion is smaller than the thickness of the inner insulating layer outside the inner conductor.

    3. The cable as claimed in claim 1, wherein the inner conductor is selected from the group consisting of a copper inner conductor, a silver-plated copper inner conductor, and a tin-plated copper inner conductor.

    4. The cable as claimed in claim 1, wherein the inner insulating layer and the insulating layer are selected from the group consisting of solid PP, solid PE, solid Teflon, foamed PP, foamed PE, and foamed Teflon.

    5. The cable as claimed in claim 1, wherein the sheath is selected from the group consisting of PE, PP, Teflon, and PET wrapping tape.

    6. The cable as claimed in claim 1, wherein there is no air gap between the inner insulating layer and the insulating layer.

    7. The cable as claimed in claim 1, wherein an air gap is included between the inner insulating layer and the insulating layer.

    8. The cable as claimed in claim 1, wherein the shielding layer comprises a first shielding layer and a second shielding layer, the first shielding layer is selected from the group consisting of aluminum foil, copper foil, pure copper tape, and silver-plated copper foil, the second shielding layer is selected from the group consisting of bare copper wire, tin-plated copper, silver-plated copper, aluminum foil, copper foil, pure copper tape, and silver-plated copper foil, and the cable is not provided with a ground wire.

    9. The cable as claimed in claim 1, wherein the shielding layer is a single layer selected from the group consisting of aluminum foil, copper foil, pure copper tape, and silver-plated copper foil.

    10. The cable as claimed in claim 9, further comprising a ground wire located on one of the two sides of the core wire, and the ground wire is tightly clamped between the shielding layer and the sheath.

    11. The cable as claimed in claim 9, further comprising a pair of ground wires respectively located on both sides of the core wire, and the ground wires are tightly clamped between the shielding layer and the sheath.

    Description

    BRIEF DESCRIPTION OF THE DRAWING

    [0008] FIG. 1 is a cross-sectional view of a first embodiment of a cable of the present invention.

    [0009] FIG. 2 is a cross-sectional view of a second embodiment of the cable of the present invention.

    [0010] FIG. 3 is a cross-sectional view of a third embodiment of the cable of the present invention.

    [0011] FIG. 4 is a cross-sectional view of a fourth embodiment of the cable of the present invention.

    [0012] FIG. 5 is a cross-sectional view of a fifth embodiment of the cable of the present invention.

    [0013] FIG. 6 is a cross-sectional view of a sixth embodiment of the cable of the present invention.

    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

    [0014] FIG. 1 shows the first embodiment of the cable 100 of the present invention. The cable 100 includes a core wire 10, an insulating layer 20 covering the core wire 10 by extrusion molding, a shielding layer 30 covering the insulating layer 20, and a sheath 50 covering the shielding layer 30.

    [0015] In this embodiment, the core wire 10 includes a pair of inner conductors 1 and an inner insulating layer 2 simultaneously covering the pair of inner conductors 1 by extrusion molding. The inner conductor 1 is selected from the group including a copper inner conductor, a silver-plated copper inner conductor, and a tin-plated copper inner conductor. The inner insulating layer 2 is selected from the group including solid PP (polypropylene), solid PE (polyethylene), solid Teflon (polytetrafluoroethylene), foamed PP, foamed PE and foamed Teflon. The insulating layer 20 is selected from the group including solid PP, solid PE, solid Teflon, foamed PP, foamed PE, and foamed Teflon. The cross-sectional profile of the inner insulating layer 2 is glasses-shaped, and the cross-sectional profile of the insulating layer 20 is stadium-shaped. The inner insulating layer 2 is provided with a connecting portion 21, and the longitudinal dimension of the connecting portion 21 is smaller than the thickness of the inner insulating layer 2 outside the inner conductor 1. There is no air gap between the inner insulating layer 2 and the insulating layer 20.

    [0016] The shielding layer 30 includes a first shielding layer 31 and a second shielding layer 32.The first shielding layer 31 is selected from the group including aluminum foil, copper foil, pure copper tape and silver-plated copper foil. The second shielding layer 32 is selected from the group including bare copper wire, tin-plated copper, silver-plated copper, aluminum foil, copper foil, pure copper tape, and silver-plated copper foil. The first shielding layer 31 may cover the insulating layer 20 in a spiral winding manner or a longitudinal coating manner, the second shielding layer 32 may cover the first shielding layer 31 in a spiral winding manner or a longitudinal coating manner. The sheath 50 is selected from the group including PE, PP, Teflon or PET (polyethylene terephthalate) wrapping tape. The PET wrapping tape can be arranged in one layer or multiple layers. The cable is not provided with a ground wire, but uses the shielding layer as the function of the ground wire.

    [0017] FIG. 2 shows the second embodiment of the cable 100 of the present invention. Compared with the first embodiment, in this embodiment, the shielding layer 30 is only provided as one layer, the shielding layer 30 is selected from the group including aluminum foil, copper foil, pure copper tape and silver-plated copper foil. The shielding layer 30 may cover the insulating layer 20 in a spiral winding manner or a longitudinal coating manner. The sheath 50 is a two-layer PET wrapping tape, of course, it can also be set as a one-layer PET wrapping tape.

    [0018] Referring to FIG. 3, which is the third embodiment of the cable 100 of the present invention. Compared with the second embodiment, in this embodiment, a pair of ground wires 70 are added. The pair of ground wires 70 are respectively located on both sides of the core wire, and the ground wire 70 is tightly sandwiched between the shielding layer 30 and the sheath 50. According to actual requirements, only one ground wire 70 may be added, and the ground wire 70 is located on one of the two sides of the core wire 10.

    [0019] FIG. 4 shows the fourth embodiment of the cable 100 of the present invention. Compared with the first embodiment, in this embodiment, the upper and lower sides between the inner insulating layer 2 and the insulating layer 20 include air gaps 60.

    [0020] FIG. 5 shows the fifth embodiment of the cable 100 of the present invention. Compared with the second embodiment, in this embodiment, the upper and lower sides between the inner insulating layer 2 and the insulating layer 20 include air gaps 60.

    [0021] FIG. 6 shows the sixth embodiment of the cable 100 of the present invention. Compared with the third embodiment, in this embodiment, the upper and lower sides between the inner insulating layer 2 and the insulating layer 20 include air gaps 60.

    [0022] The dielectric constant of air is smaller than that of insulating materials, and the attenuation during signal transmission is smaller, which makes the electrical performance of the cable better.

    [0023] For the cable of the present invention, the inner insulating layer 2 simultaneously covers a pair of inner conductors 1 in an extrusion molding manner, and after forming a core wire, the insulating layer 20 is then coated to the core wire 10 in an extrusion molding manner. Through two extrusion molding methods, while ensuring the overall impedance matching, only the thickness of the inner insulating layer 2 is isolated between the two inner conductors 1, and the distance between the two inner conductors 1 is reduced, so that the cable 100 has lower insertion loss, and the overall outer diameter of the cable is also smaller. The cable of the present invention has a high-speed data transmission capability with a signal frequency greater than 40 GHz. It provides more options for the improvement of cable high-frequency characteristics.

    [0024] The above describes only some of the embodiments of the present invention, but not all of the embodiments. Any equivalent changes to the technical solutions of the present invention by those skilled in the art by reading the description of the present invention are covered by the claims of the present invention.