An Electrically Operated Smoking Device Including an Optical Projection System for Identifying Smoking Articles Comprising an Indicium
20230042197 · 2023-02-09
Assignee
Inventors
- Matteo Bruna (Geneva, CH)
- Olayiwola Olamiposi Popoola (Walton-on-Thames, GB)
- Patrick Debergh (Cressier, CH)
- Dominik Lukasz Latuszek (Trier, DE)
US classification
- 1/1
Cpc classification
A24D1/20
HUMAN NECESSITIES
International classification
A24D1/20
HUMAN NECESSITIES
Abstract
The present invention relates to an aerosol-generating consumable article comprising at least one indicium containing coded information about the article arranged on a surface of said article. The coded information is implemented in at least one array of readable code elements that are readable upon illumination by an optical magnification reader system, said readable code elements having a density of at least 10 elements per square mm of said indicium. The invention is also related to an aerosol-generating device configured to receive a consumable article. The aerosol-generating device comprises an optical magnification reader system configured to provide an optically magnified image of at least a portion of said indicium on a detector and to read said coded information, to recognize the authenticity of the consumable article.
Claims
1. An aerosol-generating consumable article comprising at least one indicium containing coded information about the article arranged on a surface of said article, wherein said coded information is implemented in at least one array of readable code elements that are readable upon illumination by an optical magnification reader system, said readable code elements having a density of at least 10 elements per square mm of said indicium.
2. The consumable article according to claim 1, wherein said readable code elements are structural and/or coloured code elements.
3. The consumable article according to claims 1, wherein at least three of the coloured code elements have different colours.
4. The consumable article according to claim 3, wherein at least one portion of said indicium comprises at least eight code elements having a different colour.
5. The consumable article according to claim 1, wherein at least a portion of the code elements are labile code elements.
6. The consumable article according to claim 1, wherein at least a portion of said indicium comprises a waveguide.
7. An aerosol-generating device comprising: an outer body part, a power supply and a cavity defining a cavity axis, said body part having an opening being configured to receive a consumable article according to claim 1 upon insertion of said article, wherein the aerosol-generating device further comprises an optical magnification reader system defining an entry aperture and comprising at least one focusing optical element and at least one detector, said optical magnification reader system being arranged in the outer body part and configured to provide an optically magnified image, magnified by a magnification factor M equal or greater than 1, of at least a portion of said indicium, on said detector and to read said coded information, and wherein the aerosol-generating device further comprises a control unit configured to recognize authenticity of the consumable article based on the content of the information read by the optical magnification reader system in the indicium arranged on the consumable.
8. The aerosol-generating device according to claim 7 wherein the magnification factor of said optical magnification reader system is at least a factor of 2.
9. The aerosol-generating device according to claim 7, wherein said optical magnification reader system comprises at least one concave optical mirror.
10. The aerosol-generating device according to claim 7, wherein said optical magnification reader system comprises at least one adaptable optical element configured to adapt a focal length thereof.
11. The aerosol-generating device according to 7, wherein said optical magnification reader system comprises an optical waveguide arranged between said entry aperture and said detector.
12. The aerosol-generating device according to claim 11 wherein said optical waveguide comprises a diffractive light incoupler and/or a diffractive light outcoupler.
13. The aerosol-generating device according to claim 7, wherein said optical magnification reader system is configured to read at least two indicia arranged on said aerosol-generating consumable article.
14. The aerosol-generating device according to 7, wherein said optical magnification reader system comprises at least one polarizer.
15. The aerosol-generating device according to claim 7, wherein said detector is placed in said device so that, in operation of the device, the temperature of said detector remains lower than 45° C.
16. The aerosol-generating device according to claim 8 wherein the magnification factor of said optical magnification reader system is at least a factor of 10.
17. The aerosol-generating device according to claim 8 wherein the magnification factor of said optical magnification reader system is at least a factor of 20.
18. The aerosol-generating device according to claim 8 wherein the magnification factor of said optical magnification reader system is at least a factor of 50.
Description
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
[0025]
[0026]
[0027]
[0028]
[0029]
[0030]
[0031]
[0032]
[0033]
[0034]
[0035]
[0036]
[0037]
DETAILED DESCRIPTION OF THE INVENTION
[0038] The present invention will be described with respect to particular embodiments and with reference to the appended drawings, but the invention is not limited thereto. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not correspond to actual reductions to practice of the invention.
[0039] The invention will be described in the following examples in relation to aerosol-generating consumable articles 1 comprising a tobacco-containing charge of aerosol-generating material but the scope of the invention shall not be construed as limited to tobacco-based consumable articles but shall encompass any aerosol-generating consumable articles, such as smoking articles, heat-not-burn articles, e-liquid cartridges and cartomizers, which comprises an aerosol-generating substrate capable to generate an inhalable aerosol upon heating. Aerosol-generating consumable articles 1 according to the current invention may or may not have a symmetry axis and may have any form or shape, such as an elongated, cylindrical shape, or a spherical shape, or the form of a beam. As represented in
[0040] The invention is realized by an aerosol-generating article 1 and also by an aerosol-generating device 2. The invention is further realized by a system that comprises said aerosol-generating device 2 comprising an aerosol-generating article 1 that is inserted in said aerosol-generating device 2. The aerosol-generating device 2 and the aerosol-generating article 1 of said system are described in detail herein.
[0041] As used herein, the term “aerosol-generating material” refers to a material capable of releasing volatile compounds upon heating, which can form an aerosol. The aerosol generated from aerosol-generating material may be visible or invisible and may include vapours (for example, fine particles of substances, which are in a gaseous state, that are ordinarily liquid or solid at room temperature) as well as gases and liquid droplets of condensed vapours.
[0042] The first portion 1b of the aerosol-generating article 1 may comprise a charge of aerosol-generating material arranged into a wrapper 3 but not necessarily so. The term “wrapper 3” is defined broadly as any structure or layer that protects and contains the charge of aerosol-generating material, and which allows to handle that material. The wrapper 3 has an inner surface that may be in contact with the aerosol-generating material and has an outer surface away from the aerosol-generating material. The wrapper 3 may preferably comprise a cellulose based material such as paper but may also be made of a biodegradable polymer or may be made of glass or a ceramic. The wrapper may be a porous material and may have a smooth or rough outer surface 5 and may be a flexible material or a hard material. A wrapper 3 may constitute an optical opaque or partially transparent optical layer. In the case of paper, a wrapper 3 is partially transparent in the visible and in the infrared and may be partially transparent in the UV. A wrapper 3 may comprise apertures. Said indicium 10 may arranged at least partially in front of at least one aperture provided in the surface of the wrapper 3.
[0043] The term “indicium 10” is defined as an element or a structure containing information about an aerosol-generating article 1 and is typically arranged on a surface of an article 1. The surface may be an outer or an inner surface of an article 1 such as a surface pertaining to a wrapper of the article. An indicium 10 may be imbedded inside the article 1. Also, more than 1 indicium 10 may be arranged to or inside said article 1.
[0044] As used herein the term “magnification M”, defined also as magnification factor, means that the produced image B is at least as large as the object A (indicium or portion of an indicium) to be imaged The magnification M=is determined by b/a=B/A and so is greater or equal to 1. A and B are respectively the size of the indicium or portion of indicium to be imaged and B is the size of the image in the image plane.
[0045] The imaging is realized by an optical system that has an object distance a of an indicium to a focusing system that is smaller than the image distance b between the focusing system and the image plane, i.e. b a wherein a and b are related by 1/f=1/a+1/b, f being the focal length of the focusing system of the optical reader of the device. It is generally understood that the image size B must not necessarily be equal to the size of the detector that is used to detect the image. The detector may have, in at least one cross section, a size that is smaller or greater than the produced image.
[0046] To the contrary of articles of prior art that comprise indicia, the code elements or structures of the indicium 10 indicia of the present invention are individually difficult or impossible to detect or identify by the unaided human eye. The high-density indicia of the present invention require an optical reader system that provides an image size at least as great than the size of the portion of the indicium to be detected. Simple bar codes for example rely on an optical reduction system, meaning that the magnification factor is smaller than 1. The reason is that a wide field of view has to be provided by the optical imaging system. In the present invention, the field of view is small as it is intended to detect an indicium or a portion of an indicium that has a very high code density. Therefor a magnification M of at least one (M>1) is required, but is typically more than a factor 2 up to 100 or more as described further. Therefor the device of the invention is well suited for detecting indicia that are arranged on a circumference of an article. The devices of the invention may also be configured to detected and measure indicia that are arranged along a longitudinal direction of the article, which requires devices in which the article is inserted according to a predetermined angular orientation, or by using at least a rotatable part of the optical reader configured to rotate around a cavity 112.
[0047] The indicium 10 may be of different types, some of which are described in further details below. Typical classes of 2D or 3D shaped indicia 10 applicable to the aerosol-generating articles 1 according to the invention comprise, but are not limited to: [0048] reflecting or diffracting indicia 10; [0049] reflecting and diffracting indicia 10; [0050] indicia 10 comprising meta-surfaces; [0051] holographic indicia 10; [0052] polarization-sensitive indicia 10; [0053] indicia 10 comprising at least one indicium waveguide such as a resonating waveguide grating (RWG) that is arranged onto or in the indicia 10;
[0054] As appropriate for design and/or security purpose an indicium 10 may be a partially transparent indicium 10. It may further be configured such that the optical effect it provides to be, upon illumination, is independent of the axial position of the aerosol-generating article 1 relative to a fixed illumination source.
[0055] Further, any indicium 10 may be arranged on a substrate that is arranged on a surface of said wrapper and/or be realized by any physical or chemical means onto said wrapper or into said article 1;
[0056] In preferred embodiments, indicia 10 may be labile indicia, i.e. they may be altered in time or in function of physical and chemical conditions in the aerosol generating article 1 or device.
[0057] Particularly advantageous forms of indicia 10 are those where at least one indicium is configured as a resonant waveguide grating (RWG). RWG's are described in for example: [0058] A. Sharon et al.: “Resonating grating-waveguide structures for visible and near-infrared radiation”: J.Opt.Soc.Am” vol.14, nr.11, pp.2985-2993, 1997.
[0059] The use of RWG in indicia 10 allows to provide unique optical effects that are extremely difficult to recognize and to duplicate. Because of their small periodicity, they do not allow various diffractive orders, which distinguishes them from much simpler diffractive optical elements (DOE).
[0060] Of course, a combination of different types of said typical classes of indicia 10 as previously recited is foreseeable in the context of the present invention.
[0061] Indicia 10 may be arranged on a portion of a circumference of an article 1 or may be arranged on a complete circumference (e.g. in
[0062] The indicium 10 provided to the aerosol-generating article of the invention may be arranged to provide predetermined direct reflection effects such as providing, upon illumination by a light beam provided by a light source, a plurality of light beams that may have different spectra and/or different reflection angles. The reflected light beams may be diffracted light beams projected in any diffraction order. An indicium 10 may comprise structures on at least one of its surfaces or sides and may comprise structures imbedded inside a layer of the indicium 10. For example, diffractive structures may be provided on an outer surface of the indicium 10. Light beams may be collimated light beams or may be large aperture light beams and may be divergent or convergent light beams.
[0063] The coded information is implemented in at least one array of readable code elements that are readable upon illumination by an optical magnification reader system 200 as described hereinafter in various examples. The array of readable code elements has a density of at least 10 elements per square mm of said indicium 10. Preferably the array of readable code elements has a density of more than 20, more preferably more than 50 elements per square mm of said indicium 10.
[0064] The indicium 10 may be arranged according to a 2D or 3D arrangement of structures and may have any shape such as a square, or a rectangular shaped band. Preferably said band comprises an array of redundant code elements that are arranged on a complete circumference of said article 1. The term “redundant herein means that the indicium 10 comprises an array of repetitive code elements, or blocks of code elements, and may be read by a fixed optical magnification reader 200, independent of the position of the article 1, such as the angular position, relative to the optical magnification reader system 200. This may be realized for example, without limitation, by an indicium 10 that is constituted by an array of reflective or diffractive structure, an array of absorptive structures, or an array of resonating waveguides or a combination of them.
[0065] Apart from anti-counterfeit properties it is desired that the indicium 10 may also contain information of specific parameters that should be used by the inhaler devices such as the ideal temperature range, or the heating profile in function of time, or parameters which allow to provide to the smoker different smoking tastes or intensities.
[0066] A particular interesting application of the device and system of the invention consists in detecting and measuring the 3D shape of structural elements of an indicium 10. To detect information from such indicia 10, the device 2 if the invention is mandatory as it requires a high magnification factor M, at least greater than 1, typically greater than 10. In an embodiment the indicia 10 are inkjet-printed elements, such as printed domes having a well-defined and predetermined shape or 3D dimension. This is feasible by existing inkjet machines and may be applied on typical paper wrapper 3. Inkjet deposition may be realized such that the printed plots or domes have a well-defined predetermined shape. The indicia 10 may incorporate photonic crystals to provide unique optical properties such as reflection effects. The reader system may comprise means to detect the shape of the printed inkjet elements. Such means may be realized by an optical configuration based on a static detection by two detectors that have different viewing axis, or may be also realized by a reader system that comprises a movable projection lens or any optical microsystem that allows to retrieve information on the 3D shape of the printed elements. Optical detection systems such as mm sized cameras that provide a magnification lower than 1do not allow such detection.
[0067] According to a first embodiment, represented in
[0068] The use of an optical magnification reader system 200 allows providing aerosol generating devices 2 that may be arranged according to different types of high-density indicia 10 as described and allow to provide a great design flexibility of such aerosol generating devices 2, coping with issues such as extremely limited available space and heating issues of the components, such as the detector, of the needed optical reader system.
[0069] The optical magnification reader system 200 as described herein is configured to transmit electromagnetic radiation, typically radiation having wavelengths including the UV, Visible and the whole infrared (IR) range.
[0070] The optical magnification reader system 200 may comprise, but not exclusively: [0071] refractive elements, for example single or compound lenses, prisms, beam splitters, Fresnel lenses; [0072] reflective elements, for example flat or concave mirrors; [0073] diffractive elements, for example diffractive lenses realized on a transparent substrate, [0074] optical elements which optical function is provided by metasurfaces; [0075] electrically addressable elements such as MEMS devices, or a combination of such elements.
[0076] The optical magnification reader system 200 will be chosen according to the type of indicium 10 and the geometrical and temperature requirements and are typical, but not exclusively the following choices:
[0077] In embodiments, not illustrated in figures, optical fibers may be arranged in the optical reader system 200. For example, an entry face of a waveguide may be positioned in the image plane of the projection system, and a portion of the light of that magnified image 10′ of the indicium 10 may be transmitted to a distant detector 30 that is configured to detect the intensity and/or the spectrum of the guided light. In variants means may be provided to scan or switch the entry face of a waveguide in the image plane. In variants, not illustrated in the figures, a waveguide may be arranged between a light source 40 and said indicium. Such a configuration allows to illuminate the indicium by a light beam provided by an outcoupling surface of the waveguide.
[0078] Waveguides that may be arranged into the optical magnification reader system 200 may be, without limitation: [0079] single fibers 10: for transmitting intensity, polarisation and spectral information; [0080] fiber bundles 10: for transmitting images and illuminating light beams; [0081] flat waveguides 10: for transmitting intensity, polarisation and spectral information, as well as the transmission of images and illumination light beams.
[0082] All the embodiments described herein may be adapted to transmit also an illumination beam that is provided by a light source 40, 42 arranged in the optical magnification reader system 200, to the side away from an indicium 10. This may be realized by using for example a beam splitter or a semi-transparent mirror. Arranging an illumination beam in optical systems, such as a microscope, is well known and is not further described herein.
[0083] The “optical magnification reader 200” comprises an optical projection system having a magnification factor greater than 1 and at least one detector. The detector 30 may be a single detector, a detector array, a detector system comprising optical elements and electronics, or may be or comprise an imager and/or or a miniaturized spectrometer.
[0084] The “light source 40, 42” can be any source 40, 42 that may provide a light beam, preferably in the range of UV (ultraviolet), visible or infrared (IR) light. A light source may be for example a LED or a semiconductor laser. The light source must not be necessarily a power-driven light source, and thus may for example be a part or an area of a heater or a hot part of the aerosol generating device and/or or the consumable article that provides a beam of infrared light.
[0085] Upon illumination by the light source 40, the indicium 10 of an aerosol-generating article 1 will generate a projected light beam 410, which can be a reflected, transmitted or diffracted light beam. The projected light beam 410 provides, after reflection or refraction or diffraction by a first focusing element 20, at least one secondary light beam 420 that is transmitted directly onto a detector 30, or by using for example single or compound reflective, refractive or diffractive elements, beam splitters or a combination of such elements.
[0086] Said projected light beam 410 is then received on a detection system, also defined as “a detector 30”, which includes means to convert optical information provided by at least one indicium 10 of an aerosol generating article into an electrical signal or data that may be used to recognize the article and/or identify information related to the parameters of the aerosol generating device 2, for example parameters that should be used, in operation of the device 2, for said article 1. A detection system 30 may comprise a single detector or a detector array or may comprise a vision system. The detection system 30 may also comprise color filters or a miniaturised spectrometer.
[0087] Optical information on the aerosol generating article 1 may be provided by an indicium 10 arranged on an article 1 or by an indicium 10 arranged inside said aerosol generating article 1. The optical magnification system 200 transmits, in operation of the aerosol generating device 2, the optical effect provided by the indicium 10 to said detection system.
[0088] Further embodiments illustrating typical variants are now described in detail.
[0089]
[0090] In some variants it may be necessary to provide a projection system 200 having an important magnification factor, for example a factor of 10, or more than 20 or more than 50. This may be realized by embodiments, such as the one illustrated in
[0091]
[0092]
[0093]
[0094]
[0095]
[0096]
[0097]
[0098]
[0099] In variants of the embodiment of
[0100] In embodiments that aim to reduce further the overall dimensions and the production costs, optical structures such as metasurfaces may be used to realize some of the needed optical elements, such as the first focusing element 20. The use of metasurfaces to make for example metalenses allow to reduce considerably the size of the projection system, as well of their cost as they can be bath-processed using typical microtechnology processes. Using metasurfaces allows integrating lens arrays on a flat substrate and may be implemented as the first focusing element 20, and/or, if needed, in front of the detector 30. The advantage of using metasurfaces consist in providing planar microlens arrays on which other microstructures may be provided such as an array of pinholes to the backside of the first focusing planar meta surface lens array 20. This allows to provide baffle structures, reducing considerably cross talk between the different optical projection beams and so improve the contrast of the projected images in the image plane 10′. It is possible to realize metalens projector systems 200 that use for example metalenses. In an example a metalens is designed to be used with monochromatic light having a wavelength of 532 nm. The metalens may have a diameter of 2 mm and a focal length of 0.7 mm and is able to image and resolve indicia 10 linewidths of 2 μm large and centre-to-centre distance of the lines of 4 μm.
[0101] Realizing flat optics using metasurfaces are described in for example the review article: N. Yu and F. Capasso, “Flat optics with designer metasurfaces”; Nature Materials 13, p.139 (2014).
[0102] Also, in variants, if the detector 30 has to be positioned far from a hot surface, a relay-lens or curved relay-mirror providing preferably a 1:1 image may be arranged between the indicium 10 and the first focusing element 20. This allows positioning the first focusing element and the detector 30 further away from the hot surface at a distance of preferably two times the focal length of said relay lens.
[0103] In all embodiments described herein, not illustrated, a light source 40, 42 may be arranged so as to provide a light beam 400 that is transmitted through a complete diameter of an article 1. Such variants are especially useful in aerosol-generating articles 1 wherein the infrared transparency of a cross section of the article 1 is at least partial in an infrared wavelength range, for example more than 1%, more preferably more than 5%.
[0104] It is generally understood that the optical reader system 200 may comprise addressable optical elements, such as a flipping mirror or MEMS components that may be located in one of the incident or projected light paths. Other variants comprising for example optical filters or miniaturized spectrometers may be integrated in said aerosol-generating device 2. In a variant the aerosol-generating device 2 comprises a display that is configured to display information provided by the indicium 10 of the article of the invention.
[0105] It is understood that in all embodiments of the invention, the optical magnification reader system may comprise beam shaping elements or means to modify actively the path and/or the shape and/or the aperture of a light beam. For example, addressable MEMS mirrors may be implemented. MEMS devices may be very small, i.e. smaller than 10-20 mm.sup.3, and may be implemented to scan portions of an indicium 10, or collect light provided by light beams that have different orientations, such as may be provided by indicia that comprise diffraction gratings or RWG's.
[0106] Example of a Practical Realization
[0107]
[0108] By using a static projection system, the 2D arrangement or the 2D shape of the structures of the indicium may be detected. In the advantageous arrangement of
[0109] By moving the waveguide 1000, either orthogonal to the axis of the cavity 112 or by applying a slight rotation θ1, θ2 of at least one side of the end portion of the waveguide 1000, the optical reader may retrieve information on the 3D shape of the structures of the indicium 10. These structures may be realized by for example ink-jet printing allowing to provide well controlled deposited dots on, for example, a paper wrapper.
[0110] In the practical realization of
[0111] In variants, the arrangement of