Boltless fastener assembly for heavy haul railway with axle load of 35-40 tons

Abstract

A boltless fastener assembly for a heavy haul railway with an axle load of 35-40 tons includes a pre-embedded steel holder, an e-clip, an insulated gauge block and a rubber pad. A clamping leg-heel end of the e-clip is provided with an L-shaped retaining end. The pre-embedded steel holder is improved to adapt to the e-clip, and an opening is formed at a portion of the pre-embedded steel holder close to the clamping leg-heel end of the e-clip, so that the e-clip can be installed normally. During normal installation, the L-shaped retaining end of the e-clip does not contact the pre-embedded steel holder. When the rail undergoes large torsional deformation, the L-shaped retaining end on one side of a rail moves upward to contact an upper edge of the opening of the pre-embedded steel holder or engages with a second heel end.

Claims

1. A boltless fastener assembly for a heavy haul railway with an axle load of 35-40 tons, comprising a pre-embedded steel holder, an e-clip, an insulated gauge block and a rubber pad, wherein, the pre-embedded steel holder is embedded when a concrete sleeper is prepared; a second heel end of the e-clip is inserted into the pre-embedded steel holder to clamp a rail; the insulated gauge block is provided between the pre-embedded steel holder and the rail; the rubber pad is provided between the rail and a rail bearing surface of the concrete sleeper; a clamping leg-heel end of the e-clip is provided with an L-shaped retaining end; an opening is adaptively formed at a portion of the pre-embedded steel holder, and the portion is close to the clamping leg-heel end of the c-clip; and the L-shaped retaining end extends into the opening; the L-shaped retaining end is provided with a contact tooth at one end; the second heel end is provided with a groove adapted to the L-shaped retaining end; during an installation, the L-shaped retaining end of the c-clip does not contact the pre-embedded steel holder, and does not affect the installation and stress of the e-clip; when the rail undergoes large torsional deformation, the contact tooth at one end of the L-shaped retaining end and the groove of the second heel end are engaged in the pre-embedded steel holder to result in large resistance to prevent the rail from torsional deformation, and to prevent the e-clip from failure due to excessive deformation.

2. The boltless fastener assembly according to claim 1, wherein when the rail undergoes the large torsional deformation, the L-shaped retaining end on one side of the rail moves upward to contact an upper edge of the opening of the pre-embedded steel holder to result in the large resistance to prevent the rail from the torsional deformation, and to prevent the e-clip from the failure due to the excessive deformation.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

(1) FIG. 1 is a structural diagram of a prior art boltless fastener.

(2) FIG. 2 is a structural diagram of an embodiment of the boltless fastener of the invention.

(3) FIG. 3 is a structural diagram of an embodiment of the clip of the invention.

(4) FIG. 4 is a structural diagram of an embodiment of the pre-embedded steel holder of the invention.

(5) FIG. 5 is a structural diagram of an embodiment of the insulated gauge block of the invention.

DETAILED DESCRIPTION OF THE EMBODIMENT

(6) To clearly illustrate the technical solution, creative features, objectives and effects of the present invention, the invention is further described hereinafter with reference to the drawings.

Embodiment 1

(7) A boltless fastener assembly suitable for a heavy haul railway with an axle load of 35-40 tons includes the pre-embedded steel holder 1, the e-clip 2, the insulated gauge block 3 and the rubber pad 4. The pre-embedded steel holder 1 is embedded when a concrete sleeper is prepared. The e-clip 2 is inserted into the pre-embedded steel holder to clamp a rail. The insulated gauge block 3 is provided between the pre-embedded steel holder 1 and the rail. The rubber pad 4 is provided between the rail and a rail bearing surface of the concrete sleeper. A clamping leg-heel end of the e-clip 2 is provided with the L-shaped retaining end 7. The pre-embedded steel holder 1 is improved to adapt to the e-clip 2, and the opening 6 is adaptively formed at a portion of the pre-embedded steel holder 1 close to the clamping leg-heel end of the e-clip 2. The L-shaped retaining end 7 extends into the opening 6. The opening 6 is formed at a portion of the pre-embedded steel holder 1 close to the clamping leg-heel end of the e-clip 2, so that the e-clip 2 can be installed normally.

(8) During normal installation, the L-shaped retaining end of the e-clip 2 does not contact the pre-embedded steel holder 1, thereby avoiding affecting the normal installation and stress of the e-clip 2. When the rail undergoes large torsional deformation, the L-shaped retaining end 7 on one side of the rail moves upward to contact an upper edge of the opening 6 of the pre-embedded steel holder, resulting in large resistance to prevent the rail from torsional deformation, thereby preventing the e-clip 2 from failure due to excessive deformation.

Embodiment 2

(9) A boltless fastener assembly suitable for a heavy haul railway with an axle load of 35-40 tons includes the pre-embedded steel holder 1, the e-clip 2, the insulated gauge block 3 and the rubber pad 4. The pre-embedded steel holder 1 is embedded when a concrete sleeper is prepared. The e-clip 2 is inserted into the pre-embedded steel holder to clamp a rail. The insulated gauge block 3 is provided between the pre-embedded steel holder 1 and the rail. The rubber pad 4 is provided between the rail and a rail bearing surface of the concrete sleeper. A clamping leg-heel end of the e-clip 2 is provided with the L-shaped retaining end 7. The pre-embedded steel holder 1 is improved to adapt to the e-clip 2, and the opening 6 is adaptively formed at a portion of the pre-embedded steel holder 1 close to the clamping leg-heel end of the e-clip 2. The L-shaped retaining end 7 extends into the opening 6. The L-shaped retaining end 7 is provided with a contact tooth groove at one end, and the second heel end 8 is provided with an adaptive groove. The tooth groove at one end of the L-shaped retaining end 7 and the groove of the second heel end 8 contact are engaged in the pre-embedded steel holder 1. When large torsional deformation occurs on the rail, the L-shaped retaining end 7 on one side of the rail is engage with the second heel end 8 to generate large resistance to prevent the rail from torsional deformation, thereby preventing the e-clip 2 from failure due to excessive deformation.

(10) For the purposes of promoting an understanding of the principles of the invention, specific embodiments have been described. It should nevertheless be understood that the description is intended to be illustrative and not restrictive in character, and that no limitation of the scope of the invention is intended. Any alterations and further modifications in the described components, elements, processes or devices, and any further applications of the principles of the invention as described herein, are contemplated as would normally occur to one skilled in the art to which the invention pertains.