Multi-Piece Pinion Shaft Assembly
20230151842 ยท 2023-05-18
Inventors
- Daryl James Belshan (Weatherford, TX, US)
- Jacob Brown (Waller, TX, US)
- Sri Harsha Uddanda (Lafayette, IN, US)
- Todd Ryan Kabrich (Tomball, TX, US)
US classification
- 403/370
Cpc classification
F16D1/072
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16D1/033
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04B9/045
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16D1/076
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04B9/02
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04D29/044
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16H57/0025
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16C3/023
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04B1/053
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04B53/006
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16D1/0876
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04B15/02
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04D29/054
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
International classification
F16H57/00
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04D29/044
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F04D29/054
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16C3/02
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
F16D1/033
MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
Abstract
A pinion shaft assembly for operation in a power end of a reciprocating pump includes a tubular member coupled to first pinion gear member via an interference coupling extension, possibly having a protruding alignment key operable to engage a slot formed on an inner wall of the first end of the tubular member to ensure correct rotational orientation of the first pinion gear member and the tubular member and to help prevent rotation of the first pinion gear member relative to the tubular member. The tubular member is also coupled to a second pinion gear member via an interference coupling extension, possibly having a protruding alignment key operable to engage a slot formed on an inner wall of the second end of the tubular member to ensure correct rotational orientation of the second pinion gear member and the tubular member and to help prevent rotation of the second pinion gear member relative to the tubular member.
Claims
1. A reciprocating pump having a power end and a fluid end, the pump comprising: a pinion shaft assembly disposed in the power end, the pinion shaft assembly comprising: a tubular member having an inner bore, first and second ends, and at least one bearing surface; first pinion gear member having an interference coupling extension having an outside shape corresponding to an inside shape of the first end of the tubular member to achieve a tight friction fit therebetween when the interference coupling extension is inserted within the first end of the tubular member; and second pinion gear member having an interference coupling extension having an outside shape corresponding to an inside shape of the second end of the tubular member to achieve a tight friction fit therebetween when the interference coupling extension is inserted within the second end of the tubular member.
2. The reciprocating pump of claim 1, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members includes a protruding alignment key operable to engage a slot formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of the at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
3. The reciprocating pump of claim 1, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members includes a spline operable to engage a spline formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of the at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
4. The reciprocating pump of claim 1, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members includes a hole for a pin operable to engage a hole for a pin formed on at least one of the first and second ends of the tubular member to ensure correct rotational orientation of the at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
5. The reciprocating pump of claim 1, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members includes a non-circular shape operable to engage a non-circular shape formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of the at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
6. The reciprocating pump of claim 1, wherein the interference coupling extension of at least one of the first and second pinion gear members engages at least one of the first and second ends of the tubular member without using a fastener.
7. The reciprocating pump of claim 1, wherein at least one of the first and second pinion gear members further has an extended shaft portion coupled to a power source operable to rotate the pinion shaft assembly.
8. The extended shaft portion of claim 7, wherein a keyway is used for operation with the power source.
9. The extended shaft portion of claim 7, wherein a spline is used for operation with the power source.
10. A pinion shaft assembly for installation in a reciprocating pump, comprising: a tubular member having first and second ends and at least one bearing surface; first pinion gear member coupled to the first end of the tubular member via an interference coupling extension having an outside shape corresponding to an inside shape of the first end of the tubular member to achieve a tight friction fit of the interference coupling extension within the first end of the tubular member; and second pinion gear member coupled to the second end of the tubular member via an interference coupling extension having an outside shape corresponding to an inside shape of the second end of the tubular member to achieve a tight friction fit of the interference coupling extension within the second end of the tubular member.
11. The pinion shaft assembly of claim 10, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members has a protruding alignment key operable to engage a slot formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
12. The pinion shaft assembly of claim 10, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members has a spline operable to engage a spline formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
13. The pinion shaft assembly of claim 10, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members has a hole for a pin operable to engage a hole for a pin formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
14. The pinion shaft assembly of claim 10, wherein a shape of the interference coupling extension of at least one of the first and second pinion gear members has a non-circular shape for a non-circular shape operable to engage a hole for a pin formed on an inner wall of at least one of the first and second ends of the tubular member to ensure correct rotational orientation of at least one of the first and second pinion gear members and the tubular member and to help prevent rotation of the at least one of the first and second pinion gear members relative to the tubular member.
15. The pinion shaft assembly of claim 10, wherein the interference coupling extension of at least one of the first and second pinion gear members engages at least one of the first and second ends of the tubular member without using a fastener.
16. A method for assembling a pinion shaft having multiple parts, comprising: providing a tubular member having an inner bore, first and second ends, and at least one bearing surface; providing first pinion gear member having an interference coupling extension having an outside shape corresponding to an inside shape of the first end of the tubular member to achieve a tight friction fit therebetween when the interference coupling extension is inserted within the first end of the tubular member; and providing second pinion gear member having an interference coupling extension having an outside shape corresponding to an inside shape of the second end of the tubular member to achieve a tight friction fit therebetween when the interference coupling extension is inserted within the second end of the tubular member.
17. The method of claim 16, further comprising: cooling the interference coupling extension of at least one of the first and second pinion gear members to reduce its size; and aligning and inserting the cooled interference coupling extension of the at least one of the pinion gear members into a corresponding end of the tubular member with minimal interference and force until secure engagement of the two corresponding parts occurs.
18. The method of claim 16, further comprising: heating at least one end of the tubular member to increase size of the inner bore; and aligning and inserting a corresponding interference coupling extension of at least one of the first and second pinion gear members into at least one heated end of the tubular member with minimal interference and force until secure engagement of the two corresponding parts occurs.
19. The method of claim 16, further comprising assembling the tubular member with the first and second pinion gear members by using a connecting mechanism between the first and second pinion gear members.
20. The method of claim 16, further comprising: inserting the interference coupling extension of the first pinion member into the first end of the tubular member and securing engagement therebetween without using any fastener; and inserting the interference coupling extension of the second pinion member into the second end of the tubular member and securing engagement therebetween without using any fastener.
Description
BRIEF DESCRIPTION OF THE DRAWINGS
[0004]
[0005]
[0006]
[0007]
[0008]
DETAILED DESCRIPTION
[0009] Reference is made to
[0010] The second pinion gear member 106 includes a pinion gear 120 and a generally cylindrical-shaped interference coupling extension 122 (
[0011] It should be noted that the alignment key 114, 126 may be implemented with alternate suitable mechanisms such as splines, pins, and threaded engagement. As another example, a spring-loaded detent mechanism disposed in the interference coupling extension of the pinion gear member may engage an indentation formed in the inner wall of the tubular member when the pinion gear member is inserted into the tubular member at the correct depth and correct rotational orientation. Further, the shape of the interference coupling extension of the pinion gear members and the tubular member bore may be non-circular, such as square, hexagonal, octagonal, and any suitable shape. It should be noted that assembling the pinion gear members with the tubular member may include cooling the interference coupling extension and/or heating the tubular member so that the parts may be assembled with minimal interference and force.
[0012] Conventional single-piece pinion shaft implementations suffer from disadvantages of having to correct deformation of the shaft due to heat treatment of the gear teeth. Constructed of separate pieces of materials, the tubular member 102, and end members 104 and 106 may be fabricated and machined separately and then assembled together. Rather than being fabricated from a single solid piece of material, the tubular member 102 may be made from a hollow tube with the advantage of a significant reduction in weight. Further, the pinion gear teeth of the pinion gear members 104 and 106 may undergo manufacturing steps such as heat treatment without inadvertently damaging or distorting the shaft. The assembly of the pinion gear members 104 and 106 onto the tubular member 102 may be achieved without the use of torque tools as interference coupling is used without the use of fasteners. Being formed of separate pieces, the pinion gear members may be serviced without replacing the entire pinion shaft component. Because the tubular member and the pinion gear members are fabricated separately, they may be constructed from the same or different materials using the same or different manufacturing processes to achieve optimal results. It should be noted that the interference coupling extensions 110 and 122 and the ends 112 and 124 of the tubular member 102 may have other corresponding shapes such as, for example, rectangular extensions for insertion into rectangular cavities.
[0013]
[0014] In operation, the power source or motor (not shown) rotates the shaft of the multi-piece pinion assembly 100, which rotates the pinion gear teeth of the pinion gear members 104 and 106 that engage the bull gear 718 and the crankshaft 716. The crankshaft 716 rotates the crank throws about the central axis of the main shaft. The crank throws, in turn, are operable to drive the mechanical linkages 722, including respective ones of the connecting rods 724, the crossheads 726, and the pony rods 728, causing the crossheads 726 to reciprocate within the corresponding crosshead bores 730. The reciprocating motion of the crossheads 726 is transferred to respective ones of the plungers 714 via the pony rods 728, causing the plungers 714 to reciprocate within the corresponding fluid chambers 708. As the plungers 714 reciprocate within the respective fluid chambers 708, fluid is allowed into the pressure chambers 708 from the suction manifold 710 and, thereafter, discharged from the pressure chambers 708 into the discharge manifold 712.
[0015] The features of the present disclosure which are believed to be novel are set forth below with particularity in the appended claims. However, modifications, variations, and changes to the exemplary embodiments described above will be apparent to those skilled in the art, and the multi-piece pinion shaft assembly described herein thus encompasses such modifications, variations, and changes and are not limited to the specific embodiments described herein.